
Compsci 677: Distributed and OS Lec. 17

Replication
• Part 1: Remote write and local write protocols

• Part 2: Quorum-based protocols

1

Compsci 677: Distributed and OS Lec. 17

Implementation Issues
• Two techniques to implement consistency models

–Primary-based protocols

• Assume a primary replica for each data item

• Primary responsible for coordinating all writes

–Replicated write protocols

• No primary is assumed for a data item

• Writes can take place at any replica

2

Compsci 677: Distributed and OS Lec. 17

Remote-Write Protocols

• Traditionally used in client-server systems (no replication)

3

Compsci 677: Distributed and OS Lec. 17

Remote-Write Protocols (2)

• Primary-backup protocol (1 prim, 3backup)

– Allow local reads, sent writes to primary

– Block on write until all replicas are notified

– Implements sequential consistency

4

Compsci 677: Distributed and OS Lec. 17

Local-Write Protocols (1)

• Primary-based local-write protocol in which a single copy is migrated between processes.

– Limitation: need to track the primary for each data item

5

Compsci 677: Distributed and OS Lec. 17

Local-Write Protocols (2)

• Primary-backup protocol in which the primary migrates to the process
wanting to perform an update

6

Compsci 677: Distributed and OS Lec. 17

Replicated-write Protocols
• Relax the assumption of one primary

– No primary, any replica is allowed to update

– Consistency is more complex to achieve

• Synchronous writes to all replicas

• Asynchronous writes to all replicas

7

Compsci 677: Distributed and OS Lec. 17

Synchronous Replication

8Fig courtesy: V. Upadhyay

Compsci 677: Distributed and OS Lec. 17

Asynchronous Replication

9Fig courtesy: V. Upadhyay

Compsci 677: Distributed and OS Lec. 17

Replicated-write Protocols
• Relax the assumption of one primary (“leaderless”)

– No primary, any replica is allowed to update

– Consistency is more complex to achieve

• Quorum-based protocols

– Use voting to request/acquire permissions from replicas

– Consider a file replicated on N servers

• NR+NW > N NW > N/2 implicit: NW >= NR

– Update: contact NW servers and get them to agree to do update (associate version number with file)

– Read: contact NR and obtain version number

• If all servers agree on a version number, read

10

Compsci 677: Distributed and OS Lec. 17

Gifford’s Quorum-Based Protocol

• Three examples of the voting algorithm:

a) A correct choice of read and write set

b) A choice that may lead to write-write conflicts

c) A correct choice, known as ROWA (read one, write all)

11

Compsci 677: Distributed and OS Lec. 17

Quorums In Action

12

Fig courtesy: V. Upadhyay

Compsci 677: Distributed and OS Lec. 17

Quorums in Action

13

Fig courtesy: V. Upadhyay

Compsci 677: Distributed and OS Lec. 17

Replica Management
• Replica server placement

– Web: geophically skewed request patterns

– Where to place a proxy?

• K-clusters algorithm

• Permanent replicas versus temporary

– Mirroring: all replicas mirror the same content

– Proxy server: on demand replication

• Server-initiated versus client-initiated

14

Compsci 677: Distributed and OS Lec. 17

Final Thoughts
• Replication and caching improve performance in distributed systems

• Consistency of replicated data is crucial

• Many consistency semantics (models) possible

– Need to pick appropriate model depending on the application

– Example: web caching: weak consistency is OK since humans are tolerant
to stale information (can reload browser)

– Implementation overheads and complexity grows if stronger guarantees are
desired

15

Compsci 677: Distributed and OS Lec. 17

Fault Tolerance
• Single machine systems

– Failures are all or nothing

• OS crash, disk failures

• Distributed systems: multiple independent nodes

– Partial failures are also possible (some nodes fail)

• Question: Can we automatically recover from partial failures?

– Important issue since probability of failure grows with number of independent
components (nodes) in the systems

– Prob(failure) = Prob(Any one component fails)=1-P(no failure)

16

Compsci 677: Distributed and OS Lec. 17

A Perspective
• Computing systems are not very reliable

– OS crashes frequently (Windows), buggy software, unreliable hardware, software/hardware incompatibilities

– Until recently: computer users were “tech savvy”

• Could depend on users to reboot, troubleshoot problems

– Growing popularity of Internet/World Wide Web

• “Novice” users

• Need to build more reliable/dependable systems

– Example: what is your TV (or car) broke down every day?

• Users don’t want to “restart” TV or fix it (by opening it up)

• Need to make computing systems more reliable

– Important for online banking, e-commerce, online trading, webmail…

17

Compsci 677: Distributed and OS Lec. 17

Basic Concepts
• Need to build dependable systems

• Requirements for dependable systems

– Availability: system should be available for use at any given time

• 99.999 % availability (five 9s) => very small down times (6 min per year)

• Reliability: system should run continuously without failure

– Safety: temporary failures should not result in a catastrophic

• Example: computing systems controlling an airplane, nuclear reactor

– Maintainability: a failed system should be easy to repair

18

Compsci 677: Distributed and OS Lec. 17

Basic Concepts (contd)
• Fault tolerance: system should provide services despite faults

– Transient faults

– Intermittent faults

– Permanent faults

19

Compsci 677: Distributed and OS Lec. 17

Failure Models

• Different types of failures.

20

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure
 Receive omission

 Send omission

A server fails to respond to incoming requests 
A server fails to receive incoming messages 

A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure
 Value failure

 State transition failure

The server's response is incorrect 
The value of the response is wrong 

The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

Compsci 677: Distributed and OS Lec. 17

Failure Masking by Redundancy

21

• Triple modular redundancy.

